当前所在位置: 主页 > 耀世新闻 > 行业动态

Distributed Energy

[1]   张国玉,王宏华,赵慧文. 光伏组件双二极管模型参数辨识混合方法研究[J]. 电源技术,2021, 45(8): 1061-1065.
[1]   ZHANG Guoyu, WANG Honghua, ZHAO Huiwen. Research on hybrid method for parameter identification of the twodiode model of PV modules[J]. Chinese Journal of Power Sources, 2021, 45(8): 1061-1065.
[2]   马维唯. 国际太阳能发电产业现状及发展趋势[J]. 太阳能,2020(1): 5-12.
[2]   MA Weiwei. Global status and trends of solar power generation industry[J]. Solar Energy, 2020(1): 5-12.
[3]   王乾坤,蒋莉萍,李琼慧. 我国发展光伏发电存在的问题面临的形势及建议[J]. 能源技术经济,2011, 23(10): 15-18.
[3]   WANG Qiankun, JIANG Liping, LI Qionghui. Problems and suggestions for PV generation industry in China[J]. Electric Power Technologic Economics, 2011, 23(10): 15-18.
[4]   袁炜东. 国内外太阳能光热发电发展现状及前景[J]. 电力与能源,2015, 36(4): 487-490.
[4]   YUAN Weidong. Current development and prospect of solar-thermal power generation in China and abroad[J]. Power & Energy, 2015, 36(4): 487-490.
[5]   吴忠强,申丹丹,尚梦瑶,等. 基于改进蝗虫优化算法的光伏电池模型参数辨识[J]. 计量学报,2020, 41(12): 1536-1543.
[5]   WU Zhongqiang, SHEN Dandan, SHANG Mengyao, et al. Parameter identification of photovoltaic cell model based on improved grasshopper optimization algorithm[J]. Acta Metrologica Sinica, 2020, 41(12): 1536-1543.
[6]   CáRDENAS A, CA RRASCO M, MANCILLA-DAVID F, et al. Experimental parameter extraction in the single-diode photovoltaic model via a reduced-space search[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2): 1468-1476.
[7]   AYANG A, WAMKEUE R, OUHROUCHE M, et al. Maximum likelihood parameters estimation of single-diode model of Photovoltaic generator[J]. Renewable Energy, 2018, 130: 111-121.
[8]   易威,杨家强,张晓军. 一种基于改进型樽海鞘群算法的光伏电池参数辨识方法[J]. 电工技术,2021(14): 58-61, 64.
[8]   YI Wei, YANG Jiaqiang, ZHANG Xiaojun. A Photovoltaic cell parameter identification method based on improved salp swarm algorithm[J]. Electric Engineering, 2021(14): 58-61, 64.
[9]   张枭,林国汉,胡慧. 基于精英反向学习粒子群算法的光伏电池参数辨识[J]. 湖南工程学院学报(自然科学版), 2021, 31(2): 1-7.
[9]   ZHANG Xiao, LIN Guohan, HU Hui. Parameter identification of PV cell based on elite opposite learning particle swarm optimization[J]. Journal of Hunan Institute of Engineering(Natural Science Edition), 2021, 31(2): 1-7.
[10]   CHEN H, JIAO S, WANG M, et al. Parameters identification of photovoltaic cells and modules using diversification-enriched Harris hawks optimization with chaotic drifts[J]. Journal of Cleaner Production, 2019: 118778.
[11]   JORDEHI R A. Parameter estimation of solar photovoltaic (PV) cells: A review[J]. Renewable & Sustainable Energy Reviews, 2016, 61: 354-371.
[12]   CHARLES J P, ABDELKRIM M, MUOY Y H, et al. A practical method of analysis of the current-voltage charac-teristics of solar cells[J]. Solar Cells, 1981, 4(2): 169-178.
[13]   KHANNA V, DAS B K, BISHT D, et al. Estimation of photovoltaic cells model parameters using particle swarm optimization[M]. Physics of Semiconductor Devices, 2014.
[14]   ISMAIL M S, MOGHAVVEMI M, MAHLIA T M I. Characterization of PV panel and global optimization of its model parameters using genetic algorithm[J]. Energy Conversion and Management, 2013, 73(9): 10-25.
[15]   RAO R V, SAVSANI V J, VAKHARIA D P. Teaching-learning-based optimization: An optimization method for continuous non-linear large scale problems[J]. Information Sciences, 2012, 183(1): 1-15.
[16]   STORN R, PRICE K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of Global Optimization, 1997, 11(4): 341-359.
[17]   武涛,简献忠,应怀樵,等. 自适应差分进化算法在光伏组件模型参数辨识中的应用[J]. 电力科学与工程,2018, 34(4): 1-7.
[17]   WU Tao, JIAN Xianzhong, YING Huaiqiao, et al. Application of adaptive differential evolution algorithm in parameter identification of photovoltaic module model[J]. Electric Power Science and Engineering, 2018, 34(4): 1-7.
[18]   YU K, LIANG J J, QU B Y, et al. Parameters identification of photovoltaic models using an improved jaya optimization algorithm[J]. Energy Conversion and Management, 2017, 150: 742-753.
[19]   CHEN X, XU B, MEI C, et al. Teaching-learning-based artificial bee colony for solar photovoltaic parameter estimation[J]. Applied Energy, 2018, 212: 1578-1588.
[20]   徐岩,张建浩. 基于AEPSO-BPNN的光伏阵列多场景参数辨识[J]. 智慧电力,2020, 48(10): 37-44.
[20]   XU Yan, ZHANG Jianhao. Multi-scene parameter identification of photovoltaic array based on AEPSO-BPNN[J]. Smart Power, 2020, 48(10): 37-44.
[21]   ALASAN M, ALEEM S, ZOBAA A F. On the root mean square error (RMSE) calculation for parameter estimation of photovoltaic models: A novel exact analytical solution based on Lambert W function[J]. Energy Conversion and Management, 2020, 210: 112716.
[22]   丁晓,郑文明,岳立,等. 基于改进教与学优化的光伏阵列模型参数辨识研究[J]. 电力需求侧管理,2022, 24(1): 14-20, 27.
[22]   DING Xiao, ZHENG Wenming, YUE Li, et al. Research on parameter identification of photovoltaic array model based on improved teaching and learning optimization[J]. Power Demand Side Management, 2022, 24(1): 14-20, 27.
[23]   CHEN X, YU K, DU W, et al. Parameters identification of solar cell models using generalized oppositional teaching learning based optimization[J]. Energy, 2016, 99(15): 170-180.
[24]   LI S, GONG W, YAN X, et al. Parameter extraction of photovoltaic models using an improved teaching-learning-based optimization[J]. Energy Conversion and Management, 2019, 186: 293-305.
[25]   XIONG G, ZHANG J, SHI D, et al. Parameter extraction of solar photovoltaic models with an either-or teaching learning based algorithm[J]. Energy Conversion and Management, 2020, 224: 113395.
[26]   NIU Q, ZHANG H, LI K. An improved TLBO with elite strategy for parameters identification of PEM fuel cell and solar cell models[J]. International Journal of Hydrogen Energy, 2014, 39(8): 3837-3854.
[27]   JORDEHI A R. Enhanced leader particle swarm optimisation (ELPSO): An efficient algorithm for parameter estimation of photovoltaic (PV) cells and modules[J]. Solar Energy, 2018, 159: 78-87.
[28]   LIANG J, GE S, QU B, et al. Classified perturbation mutation based particle swarm optimization algorithm for parameters extraction of photovoltaic models[J]. Energy Conversion and Management, 2020, 203: 112138.


平台注册入口