#optimazer优化器 from scipy.optimize import minimize def rosem(x): return sum(100.0*(x[1:]-x[:-1])**2.0+(1-x[:-1])**2.0) x0=np.array([1.3,.7,.8,1.9,1.2]) res=minimize(rosem,x0,method="nelder-mead",options={"xtol":1e-8,"disp":True}) #method="nelder-mead"优化器采用的算法;"xtol":1e-8为精度;"disp":True显示中间过程 print("rose mini:",res)#求函数最小值 print("rose mini:",res.x) #有约束条件的求最小值,目标值 def func(x): return (2*x[0]*x[1]+2*x[0]-x[0]**2-2*x[1]**2) def func_derive(x):#求导数 dfdx0=(-2*x[0]+2*x[1]+2)#x0的导数 x[0] dfdx1=(2 * x[0] -4* x[1]) # x1的导数 x[1] return np.array([dfdx0,dfdx1]) constriate=({"type":"eq","fun":lambda x:},"jac":lambda x:,#等式约束 "ineq", "fun": lambda x:}, "jac": lambda x:)#不等式约束 res=minimize(func,[-1,1],jac=func_derive,constraints=constriate,method='SLSQP', options={"xtol":1e-8,"disp":True})#jac为雅可比行列式,constraints约束条件,method算法 #求根 from scipy.optimize import root def fun(x): return x**2 sol=root(fun,0.1)#求根,赋值0.1 print (sol.x,sol.fun)#sol.x为根,sol.fun为根的值
我们的团队人数
我们服务过多少企业
我们服务过多少家庭
我们设计了多少方案